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Abstract

In this article, I explore the rich and stunning configuration of mixtilinear incircles. I present a wide
range of results (encompassing the typical ones and other not well-known facts), solve some example
problems and provide many exercises to the reader. Basic knowledge of inversion (particularly,

√
bc

inversion), homothety for circles and harmonic bundles is strongly recommended.

I am heavily indebted to AoPS users math_pi_rate and enhanced for their valuable suggestions.
Without their help, this article would not have been completed.
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On mixtilinear incircles Chapter 1. Preliminaries

1. Preliminaries

Let ABC be a triangle. The A-mixtilinear incircle (ωA) is the circle internally tangent to the
circumcircle of 4ABC also touching sides AB and CA.

Definition 1.

A

B C

TA

Figure 1.1. The A-mixtilinear incircle.

Naturally, there also exist mixtilinear incircles for vertices B (say ωB) and C (say ωC). Note that we use
the article “the”. Indeed, there is only one mixtilinear incircle for each vertex of 4ABC.

Given a triangle ABC, there exists a unique mixtilinear incircle corresponding to each vertex.

Lemma 1.

Let us provide a method of construction of the A-mixtilinear incircle and show it actually works.

Construction. Let I be the incenter of 4ABC. The line through I perpendicular to AI meets AB and
AC at D and E, respectively. Denote by M the midpoint of B̂AC and TA the point where the ray
MI intersects the circumcircle of 4ABC. The A-mixtilinear incircle coincides with the circumcircle of
4DTAE.

Proof. Perform an inversion centered at A with radius
√

AB ·AC followed by a reflection across AI. This
transformation swaps B and C, (ABC) and BC, I and the A-excenter IA. It is easy to prove that it also
sends D and E to the contact points of the A-excircle with AC and AB, say D′ and E′, respectively.
Denote by F and M ′ the point where the A-excircle touches BC and the foot of the external bisector of
∠BAC, respectively. Points M and M ′ are interchanged. Since M ′AFIA is clearly cyclic, its circumcircle
is sent to MI, so TA and F are mapped to each other. We conclude that the A-excircle is mapped to the
circumcircle of 4DTAE; therefore, (DTAE) must touch AB and AC and be internally tangent to (BAC)
at TA. The uniqueness holds immediately.
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Figure 1.2. Proving the existence and uniqueness of ωA via inversion.

We must remark two situations. Aside the uniqueness of ωA, we have just inferred that its tangency
point with (BAC), the incenter of 4ABC and the midpoint of B̂AC are collinear; in other words, TAI

bisects arc B̂AC. It is extremely important to recognize such a collinearity! Moreover, the incenter is
the midpoint of the segment formed by the contact points of ωA and sides AB, AC. Both facts are
tremendously useful. Let us establish them separately.

The line joining the contact point of ωA with (BAC) and the incenter of 4ABC intersects
B̂AC at its midpoint.

Lemma 2.

The incenter of 4ABC is the midpoint of the segment joining the tangency points of ωA with
sides AB and AC.

Lemma 3.

The previous proof was a bit tough! In the next section, we check that there is a more natural way to
obtain the A-mixtilinear incircle.
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2. A more natural approach

A first crucial fact is introduced below.

Let Ω and ω be two circles tangent at D, so that ω is in the interior of Ω. A chord AB of Ω is
drawn in such a way AB is tangent to ω at C; then, DC bisects arc ÂB not containing D.

Lemma 4.

Proof. Define O to be the center of Ω. Observe that D is the exsimilicenter of Ω and ω; then, if DC meets
Ω again at M , the tangent to Ω through M (say ` ) must be parallel to AB. Since OM ⊥ `, we deduce
OM ⊥ AB, i.e. OM is the perpendicular bisector of AB, which gives us the desired conclusion.

O

AA BBC

D

MM `̀

OO

Figure 2.1. Line DC bisects arc ÂMB.

There is a more instructive proof via inversion1. Additionally, we can provide an easier argument for
lemma 3.

Second proof of lemma 3. Let X = TAD ∩ (ABC), X 6= TA and Y = TAE ∩ (ABC), Y 6= TA. By
lemma 4, X and Y are the midpoints of arcs B̂XA and ĈY A, therefore CX and BY intersect at I.
Applying Pascal’s theorem to the hexagon TAXCABY we conclude that E, I and D are collinear. Since
AE = AD and ∠DAI = ∠EAI, line AI is the perpendicular bisector of DE, from which the result follows
immediately.

Let us find some equal angles and isosceles trapezoids.

Lines ATA and MTA are isogonal conjugates of 4XTAY .

Lemma 5.

Proof. It is clear that AM ‖ DE due to ∠IAM = ∠AID = 90◦. Recall that X and Y are the respective
circumcenters of triangles AIB and AIC, so XY ⊥ AI and then XY ‖ AM , which gives ÂX = M̂Y ,
thus ∠ATAX = ∠Y TAM .

1Have a look at exercise 6.1.
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This previous fact allows us to derive another proof of lemma 2.

Second proof of lemma 2. We have just found that ∠ATAX = ∠Y TAM , i.e. ∠ATAD = ∠ETAM . Note
that ATA is a symmedian of 4DTAE, whence ∠ATAD = ∠ETAI; in other words, ∠ETAM = ∠ETAI.
Since M and I lie on the same side respect to TAE, points M, I and TA must be located on the same
line.

B

A

C

D

E

II

X

Y

TA

M

Figure 2.2. I is the midpoint of DE and TAI bisects arc B̂AC.

The proof of lemma 5 indicates that AXY M is an isosceles trapezoid. Furthermore, we have M̂X =
ÂY = Ŷ C and M̂Y = ÂX = X̂B, so,

Quadrilaterals AXY M, CY MX and BXMY are isosceles trapezoids.

Lemma 6.

By using lemmas 2 and 6, we may also obtain that ∠ITAE = ∠MTAY = ∠ACX = ∠ICE and similarly,
∠ITAD = ∠IBD, thereby,

Quadrilaterals BTAID and CTAIE are cyclic.

Lemma 7.

Let us say more about BTAID and CTAIE. In fact,

∠ICY = 1
2
(
ÂY + X̂A

)
= 1

2
(
ĈY + Ŷ M

)
= ∠CTAI

Analogously, ∠BTAI = ∠IBX. Taking into account that Y I = Y C and XI = XB, we deduce that,
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Lines BI and CY are tangent to the circumcircle of CTAIE, whereas CI and BX are tangent
to the circumcircle of BTAID.

Lemma 8.

BB
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Figure 2.3. Cyclic quadrilaterals and isosceles trapezoids.

This result means that,

Quadrilaterals BTAID and CTAIE are harmonic.

Lemma 9.

The above fact implies that B(X, I; D, TA) is a harmonic pencil. Projecting from B to (ABC), we realize
that,

Quadrilateral AXTAY is harmonic.

Lemma 10.

According to lemma 8, we obtain that ∠BITA = ∠ICTA and ∠TABI = ∠TAIC, then 4BTAI ∼ 4ITAC,
in other words,

The tangency point of ωA and (BAC) is the center of spiral similarity taking BI to IC.

Lemma 11.
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Together with lemma 5 of [1], the aforesaid property leads us to derive the following claim:

Let I ′ be the symmetric of I with respect to TA. So, I ′ lies on the circumcircle of 4BIC.

Lemma 12.

It is straightforward to ensure that MB and MC are tangent to (BIC); thus, it actually occurs that
I ′BIC is harmonic as well.

Let K and L be the points where the incircle touches AB and AC, respectively. Let R = CI ∩KL
and S = BI ∩KL. Then, we have,

Line TAI passes through the midpoint N of segment RS.

Lemma 13.

A

B C

K

L

RR

SS

TATA

NN

I ′

J

PP

M

H

Q

II

Figure 2.4. Another midpoint which lies on TAI.

Proof. It is routine to show that ∠BRC = 90◦ = ∠BSC (in fact, it is a simple task to obtain that
]RKB = ]RIB and ]CLS = ]CIS in terms of directed angles, so BRKI and CSLI are cyclic
quadrilaterals and the result follows), providing that BRSC is cyclic. Since TA carries BI to IC by lemma
12, it is known that ITA must be a symmedian of 4BIC; therefore, being RS and BC antiparallel, we
conclude that N, I and TA are collinear.

Define J as the point where the incircle touches BC, and I ′ as constructed in lemma 12. We get that,
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Point TA is the center of spiral similarity mapping AI to IJ .

Lemma 14.

Proof. Let H = AI ∩ (ABC), H 6= A and Q the midpoint of BC. As consequence of lemma 3, we know
that ∠ITAH = 90◦. Since H is the center of (BIC), we have that IJ and IH are isogonals of 4BIC.
Thus, because ITA and IQ are isogonals, too, we infer that ∠JIQ = ∠TAIH; therefore,4TAIH ∼ 4JIQ,
i.e. I carries TAH to JQ, so it also maps TAJ to HQ, implying that 4TAIJ ∼ 4HIQ. But

HI2 = HC2 = HQ ·HM

hence 4HIQ ∼ 4HMI and we clearly have that 4TAIA ∼ 4HMI. We conclude that 4TAIJ ∼
4TAAI. The result follows.

As an immediate result of this previous fact, we deduce that

Points A, I, J and I ′ all lie on the same circle.

Lemma 15.

We invoke this last result in the example section.
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3. More interesting properties

We have said a lot about the connection between the A-mixtilinear incircle and the incenter itself. Op-
positely, we have disregarded other important points and connections. We solve this issue in the actual
section.

T

Q

A

B C

TA

II

M

K

D

E

LL

M ′

P

Figure 3.1. ATA and AQ are isogonal conjugates of 4ABC, as ATA and KTA are of 4BTAC.

Denote by Q the contact point of the A-excircle and BC. Then, ∠BATA = ∠QAC, i.e. ATA

and AQ are isogonal with respect to 4ABC.

Lemma 16.

First proof. Recall the proof of lemma 2. We concluded that Q and TA are images of each other under the
composition of inversion at A with radius

√
AB ·AC and reflection across AI; hence, ∠BATA = ∠QAC,

as desired.

Second proof. Let T and P be the second intersection points of ATA with ωA and MTA with ωA, respec-
tively. Given that TA is the exsimilicenter of ωA and (BAC), we know TP ‖ AM ∴ IA ⊥ TP . Because
the circumcenter of ωA lies on AI, we infer that AI is the perpendicular bisector of TP , which gives us

∠BATA = ∠BAT = ∠BAI − ∠TAI = ∠CAI − ∠PAI = ∠CAP

Define `P and `M as the tangents to ωA, (BAC) passing through P, M , respectively. Note that `P ‖ `M

and `M ‖ BC, thus `P ‖ BC. Since A is the exsimilicenter of A-excircle and ωA, this implies that A, P, Q
are collinear, and consecutively, ∠BATA = ∠PAC = ∠QAC.
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Denote by K the common point of the incircle of 4ABC and BC. Lines ATA and KTA are
isogonal conjugates of 4BTAC, i.e. ∠BTAK = ∠ATAC.

Lemma 17.

Proof. Evidently, ∠BTAA = ∠BCA, which together with the previous claim yields that 4BATA ∼
4QAC, then, ATA

BTA
= AC

QC , but recall that BK = CQ (K and Q are the reflections of each other across
the midpoint of BC), so ATA

BTA
= AC

BK . Taking into account that ∠TABK = ∠TABC = ∠TAAC, the latter
implies 4BTAK ∼ 4ATAC, hence ∠BTAK = ∠ATAC, as required.

Let L and M ′ the points where the ray AI meets BC and (BAC), respectively. The similarity we obtained
before provides ∠BKTA = ∠ACTA = ∠AM ′TA = ∠LM ′TA; thus,

The intersection points of the ray AI with BC and (BAC), the contact point of the incircle
with BC and the common point of ωA with (BAC) (i.e. points L, M ′, K and TA) are on a
same circumference.

Lemma 18.

Let R = MTA ∩BC. We have the fact below:

Lines CD, AR and BE are concurrent.

Lemma 19.

Proof. By Ceva’s theorem, we just need to prove that BD
DA ·

AE
EC ·

CR
RB = 1 which reduces to show that

BR
CR = BD

CE . Recalling proposition 9, we obtain BTA ·DI = BD · ITA and IE · CTA = EC · ITA, so

BD

CE
= DI

IE
· BTA

ITA
· ITA

CTA
= BTA

CTA
= BR

CR

where we make use of the results 2 and 3. The proof is complete.

Lines DE, BC and TAM ′ concur.

Lemma 20.

Proof. Let T = TAM ′ ∩BC. Since ∠BTAR = ∠RTAC and ∠RTAM ′ = 90◦, we find that

(T, R; B, C) = −1

By proposition 19, DE must pass through T as well.

It is worth mentioning that (RTAT ) is the TA-Apollonius circle of 4BTAC.

The common tangent of ωA and (BAC) passes through the midpoint of TR.

Lemma 21.
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Figure 3.2. A bunch of concurrent lines.

Proof. Let S be the midpoint of TR (and also the circumcenter of 4RTAT ). It is easy to see that

∠STAM = ∠STAR = ∠SRTA = 1
2
(
B̂TA + M̂C

)
= 1

2
(
B̂TA + M̂B

)
= ∠MCTA

which ensures that STA is tangent to (BAC) at TA (and tangent to ωA as well).

Observe that R is the orthocenter of 4TM ′M ; in such a way, if J = RM ′∩ (BAC), J 6= M ′, we certainly
conclude that,

Points T, J, M are collinear. In other words, lines TM and M ′R meet each other at (BAC).

Lemma 22.

This allows us to improve upon lemma 20, because we now know MJ, DE, BC and TAM ′ concur at
T . Moreover, it implies that J is the second point of intersection of (RTAT ) and (BAC). Indeed, being
(RTAT ) the TA-Apollonius circle of 4BTAC, it turns out JBTAC is a harmonic quadrilateral, so JTA is
the reflection of the median TAN of the triangle BTAC across TAR.

Quadrilateral JBTAC is harmonic, therefore, lines TAJ and TAN are isogonal with respect to
4BTAC.

Lemma 23.

Denote as J ′ the second point of intersection of (AED) and (ABC), so J ′ is the center of spiral similarity
taking DE to BC and then it also carries DI to BN , i.e. 4J ′ID ∼ 4J ′NB, which gives ∠J ′IT = ∠J ′NT ,
thus J ′INT is cyclic; but note that JINM ′T is a inscribed pentagon, therefore J = J ′.

Point J is the second point of intersection of the circles (AED) and ABC.

Lemma 24.
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4. More than one mixtilinear incircle

In this section, we briefly discuss some facts related to two and three mixtilinear incircles. Let us denote
by TC and TB the tangency points of ωC and ωB with (BAC), respectively. Suppose that ωC and ωB

touch BC at D, E respectively.

A

B C

M

I

TC

TB

A1

NN

B1B1

D E

F

Figure 4.1. The radical axis of the B, C-mixtilinear incircles.

Denote by N the midpoint of the inradius perpendicular to BC and M the midpoint of arc
B̂C not containing A in (BAC). Line MN is the radical axis of ωB and ωC .

Lemma 25.

Proof. Let ` be the radical axis of ωB and ωC . In line with lemma 4, TCD and TBE meet at M . See that
∠MTBC = ∠MBC = ∠MCB = ∠ECM , then MC is tangent to (TBEC). Analogously, MB touches
(TCDB), so,

MD ·MTC = MB2 = MC2 = ME ·MTB

i.e. M has equal powers with respect to ωB and ωC , thus M ∈ `.
On the other hand, define A1, B1 and F as the contact points of the incircle with BC, AC and the

tangency point of ωC with CA, respectively. It is straightforward to convince ourselves that the radical
axis of the incircle and ωC is the midline of the isosceles trapezoid FB1A1D parallel to FD and B1A1, so
it must pass through N . Analogously, the radical axis of the incircle and ωB passes through N ; therefore,
N is the radical center of the incircle, ωB and ωC , thus N ∈ `1.

The last proof also implies that TCTBED is cyclic. Being D and E antihomologous points, it is a
simple task to show that TC and TB are antihomologous with respect to the exsimilicenter of ωB and ωC ;

1Based on [2]
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of course, this leads to conclude that the intersection point of TCTB and BC is the exsimilicenter of ωB

and ωC .

The contact point of ωA and (ABC), TA, lies on the circumcircle of 4DME.

Lemma 26.

Proof. Referring to lemma 2, we already know that ∠ITAM = 90◦; additionally, if BC and TAM meet
at T we have that ∠TIM = 90◦ in accordance with proposition 20, then,

MD ·MTC = MB2 = MI2 = MTA ·MT

which means that TCDTAT is cyclic. Since TCDETB is cyclic, too, we obtain ∠DTAM = ∠TTCD =
∠TBED and the result follows.

Applying the radical axis theorem to (TCDETB), (DEMTA) and (BAC) we derive that TCTB passes
through T ; hence, T is the exsimilicenter of ωB and ωC .

II

TT

KK
OO

A

BB CC

M

DD EE

TCTC

TB

TA

Figure 4.2. The exsimilicenter of the incircle and (BAC) is the point where ATA, BTB, CTC concur.

The intersection point of the line perpendicular to AI passing through I and BC is the exsim-
ilicenter of ωB and ωC . Moreover, the line joining the tangency points of ωB and ωC with
(BAC), and the line formed by the contact point of ωA with (BAC) and the midpoint of arc
B̂C opposite to A pass through this exsimilicenter.

Lemma 27.

According to Monge’s theorem applied to circles ωA, (ABC) and the incircle of 4ABC, we infer that the
exsimilicenter of (ABC) and the incircle lies on ATA. The same situation must occur for the lines BTB

and CTC ; therefore, recalling lemma 16 we discover that:
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The lines joining each vertex and the tangency point of its corresponding mixtilinear incircle
with (BAC) and the line passing through the incenter and circumcenter of 4ABC concur at
the exsimilicenter of its incircle and circumcircle, which turns out to be the isogonal point of
the Nagel point of 4ABC.

Lemma 28.

In our context, OI, CTC , BTB and ATA concur at K, the isogonal point of the Nagel point of 4ABC.
Finally, let us examine what happens with the radical center of ωA, ωB and ωC .

Let S be the radical center of ωA, ωB and ωC . Then, S lies on OI and divides OI into a
−2R : r ratio, where the lengths are directed.

Lemma 29.

A

B C

OO
II

KK

M1M1

M2M2

M3

PP

QQ

RR

P1P1

Q1Q1
R1R1

SS

Figure 4.3. The radical center of the three mixtilinear incircles lies on OI.

Proof. Define M1, M2 and M3 to be the midpoints of B̂C, ĈA and ÂB not containing A, B and C,
respectively; PQR the tangential triangle of 4ABC as shown above; P1, Q1 and R1 the midpoints
of IP , IQ and IR. By lemma 25, M1P1, M2Q1 and M3R1 concur at S. Triangles 4M1M2M3 and
4P1Q1R1 are homothetic with center S. Because I is the circumcenter of4P1Q1R1 as O is of4M1M2M3,
we conclude that S, I, O are collinear. Since the circumradius of 4P1Q1R1 is r

2 , we ultimately get
OS : SI = R : − r

2 = −2R : r.

This set of properties is absolutely not exhaustive but enough for our purposes here. You can find various
“new” coincidences on your own while inquiring into what we have addressed so far.
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5. Examples

Let us solve some example problems to illustrate how to use the propositions we have just discussed.

5.1. 2013 European Girls’ Mathematical Olympiad, P5

(EGMO 2013, P5) Let Ω be the circumcircle of the triangle ABC. The circle ω is tangent to
the sides AC and BC, and it is internally tangent to the circle Ω at P . A line parallel to AB
intersecting the interior of triangle ABC is tangent to ω at Q. Prove that ∠ACP = ∠QCB.

Example 1.

A

C

BB

QQ

Q′Q′

PP

Figure 5.1. Lemma 13 overkills the fifth problem of EGMO 2013.

Solution. Let Q′ be the point of tangency of the C-excircle and AB. By definition of Q and being C the
exsimilicenter of ω and the C-excircle, we have that C, Q, Q′ are collinear. In line with proposition 16,
we get

∠ACP = ∠Q′CB = ∠QCB

as required.
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5.2. 1999 International Mathematical Olympiad Shortlist, G8

(IMO 1999 SL, G8) Points A, B, C divide the circumcircle Ω of the triangle ABC into three
arcs. Let X be a variable point on the arc AB, and let O1, O2 be the incenters of the triangles
CAX and CBX. Prove that the circumcircle of the triangle XO1O2 intersects Ω in a fixed
point.

Example 2.

C

A B

X

O1

O2

TC

D

E

Figure 5.2. A beautiful concyclicity involving TC .

Solution. We prove that the tangency point of the C-mixtilinear incircle and Ω (say TC) is the required
fixed point. Let D = O1X ∩Ω, D 6= X and E = O2X ∩Ω, E 6= X. By lemma 10, we know that CDTCE
is harmonic, so

DC

DTC
= EC

ETC

But we know that D and E are the circumcenters of 4CO1A and 4CO2B, respectively; therefore,

DO1
DTC

= EO2
ETC

which together with ∠TCDO1 = ∠TCDX = ∠TCEX = ∠TCEO2 implies that 4DTCO1 ∼ 4ETCO2, i.e.
TC is the center of spiral similarity carrying DE to O1O2, then TC lies on the circumcircle of4XO1O2.
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5.3. 2016 USA IMO Team Selection Test, P2

(USA TST 2016, P2) Let ABC be a scalene triangle with circumcircle Ω, and suppose the
incircle of ABC touches BC at D. The angle bisector of ∠A meets BC and Ω at E and F .
The circumcircle of 4DEF intersects the A-excircle at S1, S2, and Ω at T 6= F . Prove that
line AT passes through either S1 or S2.

Example 3.

A

B CDD EE

F

T

S

S′

T ′

Figure 5.3. An intersection point of the A-excircle and (DEF ) lies on AT .

Solution. According to lemma 18, T is the A-mixtilinear intouch point. Define S′ to be the reflection
of T across AF and T ′ the tangency point of the A-excircle and BC. By lemma 16, A, T ′ and S′ are
collinear. We know that T and T ′ are images under the composition of inversion centered at A with radius√

AB ·AC and reflection across AF . Moreover, E and F are sent to each other, and the A-excircle is
mapped to the A-mixtilinear incircle; therefore, it suffices to prove that the intersection point of (ET ′F )
and ωA lies on AT ′. In fact, we show S′ is such a point. Indeed, since the circumcenter of the A-mixtilinear
incircle is on AF , S′ must lie on ωA.

On the other hand, we have 4BAT ∼ 4T ′AC according with lemma 16, so

∠S′FE = ∠EFT = 180◦ − ∠ABT = 180◦ − ∠AT ′C = ∠AT ′E

which leads to conclude that ET ′S′F is cyclic. Thus, the inverse S of S′ lies on AT , (DEF ) and the
A-excircle, so it coincides with either S1 or S2, as desired.
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5.4. Nicaragua Team Selection Test for IMO 2019, P7

(Nicaragua IMO TST 2019, P7) Let ABC be a triangle with AC 6= AB, ω its inscribed circle
and I the center of ω. Let D and E be the points of tangency of ω with the sides CA and AB,
respectively. Lines BI and CI meet DE at K and L, respectively. Points P and Q are located
on the side BC so that ∠LQC = 90◦ = ∠KPB. Show that the circumcircles of the triangles
PBE and QCD meet on the circumcircle of triangle ABC.

Example 4.

A

B C

D

E

I

KK

LL

Q P

TA

MM

RS

Figure 5.4. Two additional circles passing through the A-mixtilinear intouch point.

Solution. Let TA, as usual, be the A-mixtilinear intouch point of 4ABC. We show that this is the
required common point. In accordance with lemma 13, we already know that TA, I and the midpoint of
LK (say M) lie on a same line. Being QLKP a trapezoid with ∠LQP = 90◦ = ∠KPQ, the perpendicular
bisector of QP must pass through the midpoint of LK, i.e. we have MQ = MP .

Let R and S be points on CI and BI, respectively, such that ML = MS = MR = MK, then
∠CRK = 90◦ and we infer that KRPC is cyclic. As is known, ∠BKC = 90◦, hence

∠PRC = ∠PKC = ∠KBC = ∠KLC = ∠MLR = ∠MRL

which implies that M, R and P are collinear. Analogously, we can prove that M, S and Q are collinear,
thus

∠LMQ = 2∠MKS = 2∠LKB = ∠DCQ

therefore MDCQ is cyclic. In a similar way we can obtain that EMPB is cyclic as well. Finally, observe
that

∠MQC = ∠MPB = ∠AED = ∠IBC + ∠ICB = ∠ITAB = ∠ITAC

where we have taken into account that TAI bisects B̂AC. Thus, TA is the second intersection point of
(BEP ) and (CDQ), as required.
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5.5. 2014 International Mathematical Olympiad Shortlist, G7

(IMO 2014 SL, G7) Let ABC be a triangle with circumcircle Ω and incenter I. Let the line
passing through I and perpendicular to CI intersect the segment BC and the arc BC (not
containing A) of Ω at points U and V , respectively. Let the line passing through U and parallel
to AI intersect AV at X, and let the line passing through V and parallel to AI intersect AB
at Y . Let W and Z be the midpoints of AX and BC, respectively. Prove that if the points
I, X and Y are collinear, then the points I, W and Z are also collinear.

Example 5.

A

B C

II

U

V

XX
Y

W

Z

U ′U ′

Figure 5.5. Seventh geometry problem of IMO 2014 Shortlist

Solution. It is known that ∠BIC = 90◦ + ∠BAI, so ∠BAI = ∠BIV . Construct U ′ = UX ∩AB. Using
the parallelisms, we readily get that ∠BIV = ∠BAI = ∠BU ′U = ∠BY V , thus, BY IV and BU ′IU are
cyclic quadrilaterals. Furthermore,

U ′X

XU
= AX

AV
· V A

V X
· V Y

AI
= AX

V X
· V Y

AI
= 1

hence, X is the midpoint of U ′U . Because I is the midpoint of Û ′IU , we conclude that XY is the
perpendicular bisector of U ′U , therefore

∠V BI = ∠V Y I = ∠UXI = ∠AIY = 90◦

which implies that Y is the point where the A-mixtilinear incircle touches AB, and by lemma 7 V must
coincide with the tangency point of such a circle and (ABC). Now, recall lemma 11. We immediately
recognize that V maps BI to IC, then IV must be a symmedian of 4BIC, i.e. ∠BIV = ∠ZIC, whence
∠BIZ = 90◦.

Mathematical Reflections 2 (2020) 19



On mixtilinear incircles Chapter 5. Examples

On the other hand, ∠Y AI = ∠BAI = ∠BIV = ∠V CI and ∠AIY = 90◦ = ∠V IC, so 4Y AI ∼
4V CI. Since Y X

XI = V U
UI , taking into account that W is the circumcenter of 4AIX and Y I is tangent to

(BIC), we obtain that

∠WIA = ∠WAI = ∠XAI = ∠ICU = ∠ICB = ∠Y IB

thus ∠WIB = 90◦ = ∠BIZ, which indeed implies the required assertion.

Let us end this chapter solving the following hard and amazing problem.

5.6. 2019 International Mathematical Olympiad, P6

(IMO 2019, P6) Let I be the incenter of acute triangle ABC with AB 6= AC. The incircle ω
of ABC is tangent to sides BC, CA, and AB at D, E, and F , respectively. The line through D
perpendicular to EF meets ω at R. Line AR meets ω again at P . The circumcircles of triangles
PCE and PBF meet again at Q. Prove that lines DI and PQ meet on the line through A
perpendicular to AI.

Example 6.

AA

BB CD

E

FF

I

RR

PP

QQ

TATA

K

SS

M

D′D′

Figure 5.6. Sixth problem of IMO 2019 in all its glory.
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Solution. Without loss of generality, assume that AC > AB. We start with some preparations. Define
TA to be the A-mixtilinear intouch point. Let P ′ and R′ the intersection points of ATA with ω, so that
AR′ < AP ′. By lemmas 2 and 17, and being I the center of ω, we conclude that P ′ is the reflection of D
across TAI. Using lemma 14 we get that

∠DR′P ′ = ∠TAIP ′ = ∠DITA = ∠IATA

thus R′D ‖ AI and thus R′D ⊥ EF , hence R′ = R and consecutively P = P ′. The previous angle
equalities also imply that TAI is tangent to the circumcircle of 4AIP (1).

Let M be the midpoint of B̂AC. Observe that

∠SAP = 90◦ + ∠PAI = 90◦ + ∠PRD = 90◦ + ∠PDB = 180◦ − ∠PDS

which gives that ASDP is a cyclic quadrilateral (2).
Define K to be the intersection point of MI with (BIC). According to (1) and lemmas 12 and 14 we

have that TAK2 = TI2 = TP · TA. In concomitance with (2) and lemma 15 we get

∠KPTA = TAKA = ∠IKA = ∠IDA = ∠SDA = ∠SPA

thus, S, P and K are collinear.
We turn to the solution of the problem. Let Q′ = SP ∩ (BIC), K 6= Q′. Observe that

∠BQ′P = ∠BQ′K = ∠BIK = ∠BID − ∠TAID = ∠FED − ∠PED = ∠FEP = ∠BFP

and

∠PQ′C = ∠KQ′C = ∠KIC = ∠TAID + ∠DIC = ∠PFD + ∠DFE = ∠PFE = ∠PEC

hereby BFQ′P and CEQ′P are cyclic quadrilaterals, so Q′ = Q and thus Q lies on PS. We are done!
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6. Problems

Exercise 6.1. Prove lemma 4 inverting at M with radius MA.

Exercise 6.2. (Centroamerican MO 2016, P6) Let ABC be a triangle with incenter I and circumcircle
Γ. Let M = BI ∩ Γ and N = CI ∩ Γ. The line through I parallel to MN intersects AB, AC at P , Q
respectively. Show that the circumradii of 4BNP and 4CMQ are congruent.

Exercise 6.3. (Sharygin 2017, 9th grade, P2) Let I be the incenter of triangle ABC, M the midpoint
of AC and W the midpoint of ÂB not containing C. It is known that ∠AIM = 90◦. Find the ratio
CI : IW .

Exercise 6.4. Given a scalene triangle ABC, let D, E, F be the intersection points of the lines through
I perpendicular to AI, BI, CI and BC, CA, AB, respectively. Show that D, E and F are collinear.

Exercise 6.5. Given a triangle ABC with incenter I and a circle ω which is tangent to AN, AC and also
is internally tangent to the circumcircle of ABC. Lines AI, BI, CI meet the circumcircle of ABC at
A′, B′, C ′, respectively. Let the lines through I and parallel to A′B′, A′C ′ meet A′C ′, A′B′ at B1, C1,
respectively. Let ω has center J and is tangent to AB, AC at C2, B2 and is tangent to the circumcircle
of ABC at T . Prove

i. A′B1C1JT is cyclic.

ii. C1 is the circumcenter of TIB2C and B1 is the circumcenter of TIC2B.

Exercise 6.6. (ELMO 2014 SL, G7) Let ABC be a triangle inscribed in circle ω with center O; let ωA su
A-mixtilinear incircle, ωB its B-mixtilinear incircle, ωC its C-mixtilinear incircle, and X be the radical
center of ωA, ωB, ωC . Let A′, B′, C ′ be the points at which ωA, ωB, ωC are tangent to ω. Prove that
AA′, BB′, CC ′ and OX are concurrent.

Exercise 6.7. (Korea Winter Program Practice Test 2018, P5) Let ABC be triangle with circumcenter
O and circumcircle ω. Let S be the center of the circle which is tangent with AB, AC, and ω (in the
inside), and let the circle meet ω at point K. Let the circle with diameter AS meet ω at T . If M is the
midpoint of BC, show that K, T, M, O are concyclic.

Exercise 6.8. (IMO 2017 SL, G4) In triangle ABC, let ω be the excircle opposite A. Let D, E, and F
be the points where ω is tangent to lines BC, CA, and AB, respectively. The circle AEF intersects line
BC at P and Q. Let M be the midpoint of AD. Prove that the circle MPQ is tangent to ω.

Exercise 6.9. (ELMO 2017 SL, G4) Let ABC be an acute triangle with incenter I and circumcircle ω.
Suppose a circle ωB is tangent to BA, BC, and internally tangent to ω at B1, while a circle ωC is tangent
to CA, CB, and internally tangent to ω at C1. If B2 and C2 are the points opposite to B, C on ω,
respectively, and X denotes the intersection of B1C2, B2C1, prove that XA = XI.

Exercise 6.10. (IMO 2016 SL, G2) Let ABC be a triangle with circumcircle Γ and incenter I. Let M
be the midpoint of side BC. Denote by D the foot of perpendicular from I to BC. The line through
I perpendicular to AI meets sides AB and AC at F and E respectively. Suppose the circumcircle of
triangle AEF intersects Γ at a point X other than A. Prove that lines XD and AM meet on Ω.

Exercise 6.11. (USAMO 2017, P3) Let ABC be a scalene triangle with circumcircle Ω and incenter I.
Ray AI meets BC at D and meets Ω again at M ; the circle with diameter DM cuts Ω again at K. Lines
MK and BC meet at S, and N is the midpoint of IS. The circumcircles of 4KID and 4MAN intersect
at points L1 and L2. Prove that Ω passes through the midpoint of either IL1 or IL2.
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Exercise 6.12. (Taiwan TST 2015, Round 3, Quiz 1, P2) Let Ω be the circumcircle of the triangle ABC.
Two circles ω1, ω2 are tangent to each of the circle Ω and the rays −−→AB,

−→
AC, with ω1 interior to Ω, ω2

exterior to Ω. The common tangent of Ω, ω1 and the common tangent of Ω, ω2 intersect at the point X.
Let M be the midpoint of the arc BC (not containing the point A) on the circle Ω, and the segment AA′

be the diameter of Ω. Prove that X, M and A′ are collinear.

Exercise 6.13. (Taiwan TST 2014, Round 3, Day 1, P3) Let M be any point on the circumcircle of
4ABC. Suppose the tangents from M to the incircle meet BC at two points X1 and X2. Prove that
the circumcircle of 4MX1X2 intersects the circumcircle of 4ABC again at the tangency point of the
A-mixtilinear incircle.

Exercise 6.14. (ELMO 2014 SL, G8) In triangle ABC with incenter I and circumcenter O, let A′, B′, C ′

be the points of tangency of its circumcircle with its A, B, C-mixtilinear incircles, respectively. Let ωA

be the circle through A′ that is tangent to AI at I, and define ωB, ωC similarly. Show that ωA, ωB, ωC

have a common point X other than I, and that ∠AXO = ∠OXA′.

Exercise 6.15. (Mathematical Reflections O451). Let ABC be a triangle, Γ its circumcircle, ω its incircle
and I the incenter. Let M be the midpoint of BC. The incircle ω is tangent to AB and AC at F and E;
respectively. Suppose EF meets Γ at distinct points P and Q. Let J denote the point on EF such that
MJ is perpendicular on EF . Show that IJ and the radical axis of (MPQ) and (AJI) intersect on Γ.

Exercise 6.16. (AoPS Problem Making Contest 2016, P7) Let ABC be a given triangle, ω its A-
mixtilinear incircle and IA its A-excenter. Denote by H the foot of the A-altitude to BC, E the midpoint
of B̂AC, M the midpoint of BC and N the midpoint of AH. Suppose that P = MN ∩AE and ray PIA

meets ω for the first time at S. Show that (BSC) and ω are tangent to each other.
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